Lunes 22 de septiembre de 2025

Los científicos están cada vez más cerca de convertir el carbón en grafito

  • 10 de enero, 2023
El tipo de enlaces químicos en el grafito hacen que conduzca la electricidad, aunque no sea un metal.

    Un equipo de la Universidad de Ohio ha llevado a cabo una serie de simulaciones que muestran cómo el carbón puede convertirse en materiales valiosos, y neutros en carbono, como el grafito y los nanotubos de carbono.

Utilizando la supercomputadora Bridges-2 del Centro de Supercomputación de Pittsburgh, los investigadores simularon carbón y grafito en un programa informático y recrearon virtualmente la conversión de carbón en grafito. Generaciones de científicos saben que, al menos en teoría, es posible convertir el carbón en grafito si el combustible fósil se somete a suficiente presión a una temperatura lo bastante alta.

El grafito puro es una serie de láminas formadas por anillos de seis carbonos. Un tipo especial de enlace químico denominado "enlace aromático" mantiene unidos estos carbonos.

En los enlaces aromáticos, los electrones pi flotan por encima y por debajo de los anillos. Estas nubes de electrones "resbaladizas" hacen que las láminas se deslicen fácilmente unas sobre otras. La "mina" de los lápices -una forma de grafito de baja calidad- deja una marca en el papel porque las láminas se deslizan unas sobre otras y se pegan al papel.

Los enlaces aromáticos tienen otra virtud, importante en tecnología electrónica. Los electrones pi se mueven fácilmente de anillo a anillo y de lámina a lámina. Esto hace que el grafito conduzca la electricidad, aunque no sea un metal.

En comparación, el carbón es químicamente desordenado. A diferencia de la naturaleza estrictamente bidimensional de una lámina de grafito, tiene conexiones en tres dimensiones. También contiene hidrógeno, oxígeno, nitrógeno, azufre y otros átomos que podrían alterar la formación del grafito.

El grafito es un importante material de carbono con muchos usos. Una aplicación floreciente del grafito es para los ánodos de las baterías de iones de litio, y es crucial para la industria de los vehículos eléctricos. Por ejemplo, un Tesla Model S necesita una media de 54 kg de grafito.

Carbón simplificado

Para comenzar sus estudios, David Drabold y su equipo crearon un "carbón" simplificado que consistía únicamente en átomos de carbono en posiciones aleatorias. Al exponer este carbón simplificado a presión y alta temperatura, unos 3.000 Kelvin o casi 5.000 Fahrenheit, pudieron dar un primer paso en el estudio de su conversión en grafito.

"Para sacar el papel de grafito amorfo necesitábamos hacer muchos análisis serios", dijo Chinonso Ugwumadu, estudiante de doctorado en el grupo de Drabold. "Comparado con otros sistemas que tenemos, Bridges es el más rápido y preciso. Nuestros sistemas caseros... tardan unas dos semanas en simular 160 átomos. Con Bridges, podemos ejecutar 400 átomos en seis o siete días utilizando la teoría funcional de la densidad".

Al principio, los científicos de Ohio realizaban sus simulaciones utilizando principios físicos y químicos básicos a través de la teoría funcional de la densidad. Esta aproximación, precisa pero muy laboriosa, requería muchos cálculos en paralelo. Posteriormente, cambiaron sus cálculos a una nueva herramienta informática, GAP (potencial de aproximación gaussiano), que utiliza el aprendizaje automático para realizar esencialmente los mismos cálculos con mucha más rapidez.

Los resultados fueron más complicados de lo que el equipo esperaba. Las láminas se formaron, pero los átomos de carbono no formaron por completo anillos simples de seis carbonos. Una fracción de los anillos tenía cinco carbonos; otros, siete.

Los anillos que no son de seis carbonos plantean un problema interesante, en más de un sentido. Mientras que los anillos de seis carbonos son planos, los de cinco y siete se fruncen, pero en sentidos opuestos de "curvatura positiva y negativa".

Los científicos podrían haber esperado que estas arrugas arruinaran la formación de las láminas de grafito. Pero las láminas se formaron de todos modos, posiblemente porque los pentágonos y heptágonos se equilibraban entre sí en las simulaciones. Técnicamente, las láminas eran de grafito amorfo porque no tenían sólo seis anillos. Pero, de nuevo, formaban capas.

Nanotubos de carbono

En otra serie de simulaciones para estudiar moléculas en lugar de sólidos. Las condiciones de estas simulaciones hicieron que las láminas se curvaran sobre sí mismas. En lugar de láminas, formaron nanotubos de carbono amorfo anidados (CNT), una serie de tubos de una sola capa atómica, uno dentro de otro.

Últimamente, los CNT están de moda en la ciencia de los materiales, ya que son pequeños cables que pueden utilizarse para conducir electricidad a escalas increíblemente pequeñas.

Otras aplicaciones prometedoras de los CNT son la catálisis de pilas de combustible, la producción de supercondensadores y baterías de iones de litio, el blindaje contra interferencias electromagnéticas, las ciencias biomédicas y la nanoneurociencia.

Una faceta importante del trabajo con CNT fue que se estudió cómo las arrugas amorfas de las paredes de los tubos afectan al movimiento de la electricidad a través de la estructura. En la ciencia de los materiales, cada "error" es también una "característica": los ingenieros pueden utilizar estas irregularidades para ajustar el comportamiento de un CNT determinado a los requisitos exactos que necesita un nuevo dispositivo electrónico.

El grupo sigue estudiando la conversión de átomos de carbono en grafeno y materiales afines.

Worldenergytrade.com

 

NOTICIAS RELACIONADAS
Rahasia Memanfaatkan Pola Mahjong Ways 2 untuk Mahasiswa yang Ingin Menambah Pundi-pundi dari Modal Terbatas
Mendefinisikan Kemenangan dalam Mahjong Wins 3 Strategi Sederhana untuk Karyawan yang Ingin Mengoptimalkan Waktu Luang
Langkah Cerdas Menggali Bonus Terbesar di Mahjong Ways Trik untuk Penambang Nikel dengan Modal Minim
Menembus Batas RTP Tertinggi Mahjong Tips Menarik untuk Gojek dan Ojol Mengelola Waktu dan Keuntungan
Bonus Besar Tanpa Ribet Cara Mahasiswa Menemukan Potensi dari Pola Mahjong Wins 2 dengan Modal 50.000 Rupiah
Transformasi Langkah dan Pola di Mahjong Ways Mengungkap Strategi Menguntungkan untuk Karyawan dan Pengusaha
Menggali Potensi Bonus Mahjong Ways 2 dengan Metode yang Belum Diketahui Panduan untuk Penambang dan Pekerja Lapangan
Mengubah Waktu Luang Menjadi Keuntungan Tips Memahami Formasi Mahjong Wins 3 bagi Pemain Motor Bekas Nmax dan Vario
Cara Sederhana Mendefinisikan RTP dalam Mahjong Wins 3 Panduan untuk Gojek dan Ojol yang Ingin Berinvestasi dengan Cerdas
Pola Jitu Mahjong Ways yang Tak Terduga Trik bagi Penambang Batu Bara untuk Memaksimalkan Waktu Luang dan Keuntungan
Melacak Jejak Pola Mahjong Ways 2 Rahasia Mahasiswa Memutar Keberuntungan dari Modal Sekecil 50.000 Rupiah
Mengungkap Jendela Kemenangan di Mahjong Wins 3 Strategi Pekerja Sampingan untuk Mengubah Waktu Menjadi Emas
Menyelam Lebih Dalam ke Dunia Mahjong Wins 2 Panduan Penambang Nikel Menemukan Harta Karun dalam Setiap Putaran
RTP dan Rahasia Tersembunyi Menavigasi Dunia Mahjong Wins bagi Gojek dan Ojol dengan Sentuhan Keberuntungan
Menjadi Arsitek Kemenangan di Mahjong Ways Trik Tersembunyi untuk Karyawan yang Mengincar Bonus Tanpa Banyak Modal
Transformasi Modal Minim Jadi Hasil Maksimal Cara Mengoptimalkan Mahjong Wins 2 dengan Pola Tak Terduga
Di Balik Formasi Mahjong Ways 2 yang Menguntungkan Menyusun Langkah Sukses untuk Penambang Batu Bara yang Ingin Investasi Cerdas
Merangkai Pola dan Trik Mahjong Wins Cara Mahasiswa Menciptakan Peluang Baru dari Keterbatasan Modal
Menuju Keajaiban Bonus Terbesar di Mahjong Wins 2 Strategi Tak Terlihat bagi Ojol yang Ingin Menambah Pundi-pundi
Membuka Pintu Keuntungan Tersembunyi Menaklukkan Pola Mahjong Ways 2 bagi Pengguna Motor Bekas Aerox dan Nmax
suryajp
monggojp
senang303
sukses303
horus303
sboku99
spesial4d
joinbet99